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A general method for estimating the Yang-Yang ratio,Rm, of a model fluid via Monte Carlo simulations is
presented on the basis of data for a hard-core square-wellsHCSWd fluid and the restricted primitive model
sRPMd electrolyte. The isothermal minima ofQL;km2lL

2 / km4lL are evaluated atTc in anL3L3L box where
m=r−krlL is the density fluctuation. The “complete” finite-size scaling theory for theQmin

± sTc;Ld incorporates
pressure mixing in the scaling fields, thereby allowing for a Yang-Yang anomaly. It yields a dominant term in
the asymmetry,Qmin

+ −Qmin
− , varying asL−b/n with an amplitude proportional to the crucial pressure-mixing

coefficient, j2. The reliably known critical order-parameter distribution forsd=3d Ising systems then enables
one to estimatej2, thereby yieldingRm, from theQ minima together with information on the nonuniversal
amplitudes for the order parameter and the susceptibility. The detailed analysis needed to estimatej2 for an
HCSW fluid and the RPM is presented. Furthermore, theQ-minima belowTc can also provide thecoexistence-
curve diameters, rdiamsTd; 1

2sr++r−d, very close toTc for both models: herer±sTd are the densities of the
coexisting liquid and gas phases. The recently developed recursive scaling algorithm forDr`sTd;r+−r− is
adapted to investigate the corresponding universal scaling functions. The two extremal forms of these scaling
functions are computed with the aid of the exactly soluble decorated lattice-gas model. The critical densities for
the RPM and HCSW fluid found via this route are consistent with previous estimates obtained from the data
aboveTc; the magnitudes of the leadinguT−Tcu2b and uT−Tcu1−a corrections tordiamsTd are estimated.
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I. INTRODUCTION

The presence of a Yang-Yang anomaly means that the
chemical potential,mssTd, on a phase boundary separating
liquid and vapor exhibits a divergence of the second tem-
perature derivative,d2mssTd /dT2, when the critical tempera-
ture Tc of the fluid is approached from below in the same
fashion as the constant-volume specific heat,CVsT;rcd. This
possibility was first proposed by Yang and Yangf1g 40 years
ago on the basis of a simple thermodynamic relation they
derivedsreferred to later as the Yang-Yang equationd which
connects the specific heat to the pressure and chemical po-
tential derivatives. It was only more recently, however, that
the Yang-Yang anomaly in fluid criticality was seriously in-
vestigated by Fisher and co-workersf2,3g. They analyzed
carefully experimental data for the two-phase heat-capacity
of propanesC3H8d and CO2 in the critical region and showed
that d2ms /dT2 indeeddiverges like the specific heat at criti-
cality. Further study of the experimental data for propane
showed that impurities in the system can have significant
effects on the heat-capacity dataf4g; however, the existence
of Yang-Yang anomalies was not ruled out. Nonetheless, fur-
ther careful, experimental investigations are desirablef5g.

Recently computer simulations have become an efficient
tool to study the behavior of fluids and complex fluids and,
in particular, to enhance our understanding of their critical
behavior. Investigating a Yang-Yang anomaly in fluid criti-
cality can thus be aided by simulations for model fluids,
since impurities are absent in such models; but such simula-
tions pose a serious challenge. Specifically, any sharp diver-
gence of a thermodynamic quantity will be rounded owing to
finite-size effects. These arise from the divergence of the
correlation length at criticality. In fact, Orkoulas, Fisher, and

Panagiotopoulosf6g performed grand canonical Monte Carlo
simulations on a hard-core square-wellsHCSWd model fluid
and concluded that this model probably exhibits a negative
but small Yang-Yang anomaly quantified by a Yang-Yang
ratio ssee belowd Rm=−0.08±0.12; however, they could not
rule out the possibility that a Yang-Yang anomaly was ab-
sent. Thus one might ask: How might one measure a Yang-
Yang anomaly precisely from simulations on model fluids?

To account for a Yang-Yang anomaly, it is necessary to
mix the pressure deviation,p−pc, into the asymptotic scaling
fields. More specifically, the full thermodynamics of a one-
component fluid near the bulk critical pointspc,Tc,mcd can
be described with three relevant scaling fieldsf2,7g, namely,

p̃ = p̌ − k0t − l0m̌ + ¯ , s1d

t̃ = t − l1m̌ − j1p̌ + ¯ , s2d

h̃ = m̌ − k1t − j2p̌ + ¯ , s3d

where the dimensionless deviations of the thermodynamic
fields from their critical values are

t ;
T − Tc

Tc
, p̌ ;

p − pc

rckBTc
, m̌ ;

m − mc

kBTc
, s4d

while j1,j2,k0, … are nonuniversal mixing coefficients andrc
is the critical density. The scaling hypothesis then asserts
f2,7g

p̃ < Qut̃u2−aW±sUh̃/ut̃uDd, for t̃ _ 0, s5d

wherea is the critical exponent for the specific heat whileD
is the gap exponent satisfying the relationD=b+g. Hereb
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andg are the critical exponents for the order parameter and
the susceptibility/compressibility, respectively. In this formu-
lation W±sxd represents two branches of a universal scaling
function whileQ andU are nonuniversal amplitudes depend-
ing on microscopic details of the system under study. Note,
however, that we have neglected here, for simplicity, both
corrections to scaling and higher order nonlinear mixing
termsf7,8g.

The strength of a Yang-Yang anomaly is conveniently

measured by Rm, the limiting ratio of C̃msTd
;−Tsd2ms /dT2d to the constant-volume specific heat,
CVsT,r=rcd swherer is the number densityd. It then follows
that the Yang-Yang ratioRm is relatedf7,8g to the pressure-
mixing coefficientj2 via

Rm = − j2/s1 − j2d. s6d

To measure the Yang-Yang ratio,Rm, quantitatively via
simulations, the first question is as follows: What thermody-
namic or other quantities should be studied? The answer is

not obvious since a direct attemptf6g to study C̃msTd, etc.
proves not effective. Here we show that the desired informa-
tion can be obtained by carefully investigating the finite-
size-system parameterQL defined byf9–11g

QLsT;krlLd ; km2lL
2/km4lL, m= r − krlL, s7d

where k·lL is the grand canonical average at fixedT and m
chosen to yield the desired mean density. In the thermody-
namic limit sL→`d, the parameterQL then exhibits surpris-
ing, singular behavior on the two sides of the coexistence
curve f12–14g; namely, itvanisheson the coexistence curve
boundaryr=r+sTd andr=r−sTd, wherer±sTd are the densi-
ties of the coexisting liquid and gas states in the two-phase
region. However, in the one-phase region,Q` remains1

3 but
drops discontinuously to zero at the phase boundary when
the two-phase region is entered; it then rises continuously to
unity as the mean density approaches the coexistence-curve
diameterf14g, namely,

rdiamsTd ; 1
2sr+ + r−d. s8d

Of course in a finite system, these discontinuities become
rounded. ThusQLskrlLd exhibits two isothermal minima of
magnitudes, sayQmin

± sT;Ld, at densities,rmin
± sT;Ld, near the

coexistence curve boundaryf14,15g. sSee also Fig. 1 below.d
For symmetric systems such as Ising models or lattice gas

models, the two minima,Qmin
± sT;Ld, have equal height while

their corresponding densities,rmin
± sT;Ld, are located sym-

metrically about the critical density,r=rc. However, as soon

as mixing enters in the scaling fieldst̃ andh̃ fsees2d ands3dg,
one finds thatQLskrlLd becomes asymmetric. In fact, accord-
ing to thecompletefinite-size scaling theoryfan extension of
s5d to finite systemsf14gg, the minima,Qmin

± , and their loca-
tions, rmin

± , exhibit leading asymmetric contributions arising
from the pressure-mixing coefficientj2. More specifically, let
us define normalizedasymmetry factorsof the minima via

AminsT;Ld ; sQmin
+ − Qmin

− d/sQmin
+ + Qmin

− d, s9d

BminsT;Ld ; srmin
+ + rmin

− − 2rdiamd/srmin
+ − rmin

− d. s10d

It is obvious that these quantities vanish identically for sym-
metric systems. For asymmetric situations, however, both ex-
hibit leading finite-size correction terms varying asL−b/n

which are proportional toj2, while a nonvanishingsl1+ j1d
combination induces a further correction term decaying as
L−sD−1d/n: see below in Sec. III. Heren is the correlation-
length exponent. Note that for thesd=3d-dimensional Ising
universality class to which fluid criticality is believed to be-
long, we haveb /n.0.517 andsD−1d /n.0.897: see Table
I. It will be shown in Sec. III that the amplitudes of these
leading terms can be expressed in terms of the nonuniversal
order-parameter and susceptibility amplitudesswhich, in
principle, can be measured from simulationsd and certain
universalconstants. This then raises the hope of measuringj2
sor Rmd via simulations.

Indeed, it is shown below that the critical order-parameter
distribution function for Ising systems and the estimated
nonuniversal amplitudes,B andC+, for the density disconti-
nuity and the susceptibility, provide precise estimates for the
pressure-mixing coefficient,j2, and, thereby vias6d for the
Yang-Yang ratio,Rm. One should notice, however, that mea-
suring j2 requires precise knowledge ofTc andrc which must
also be found by well designed simulations utilizing finite-
size scaling theoryf11,14g.

Among the consequences of pressure mixing in the scal-
ing fields sbeyond the divergence ofd2ms /dT2 at criticalityd
are the appearance of a complex spectrum of singular correc-
tion exponents in various thermodynamic propertiesf7,8g. In
particular, the pressure-mixing coefficientj2 induces a lead-
ing singular term varying asutu2b in the coexistence-curve
diameter,rdiamsTd f7g. This term then dominates the previ-
ously knownutu1−a term f16g. Hence the nonvanishing ofj2
may affect the shape of the diameter strongly near criticality,
and this inevitably hampers the precise estimation of the
critical density.

A conventional way of estimating the coexisting liquid
and gas densities,r±sTd, is to observe the grand canonical
equilibrium distribution function,PLsrd, of the density,r,
below the critical temperature,Tc. In a finite geometry of
dimensionsLd with periodic boundary conditions the distri-
bution function generally exhibits two peaks nearr±sTd
whenL@a wherea measures the size of particlesf9,15,17g.
For sufficiently largeL, these peaks can be represented by
two Gaussians clearly distinguished from each other. Ob-
serving these peaks then provides direct estimates ofr±sTd
whenT is sufficiently low; for fluids which exhibit no “ob-
vious symmetry,” the equal-weight prescription has been
widely accepted to estimater±sTd from PLsrd f15,17g. This

TABLE I. Preferred values for the universal Isingd=3 critical
exponents adopted heref26g.

a b g d D n ua

0.109 0.326 1.239 4.80 1.565 0.630 0.52

aFrom Ref.f28g.
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approach has yielded reasonable estimates ofr±sTd for the
HCSW fluidf6g and for the RPM electrolytef18g but only up
to 1–2 % belowTc. However, whenT approachesTc more
closely, finite-size effects blur the distinction between the
coexisting liquid and gas states for most computationally ac-
cessible system sizes thereby seriously hampering the reli-
able estimation of the coexistence curve. Furthermore,PLsrd
at criticality for finite L still exhibits two well-separated
maxima; on the other hand,r±sTd shouldsfor b.0d merge
precisely at the critical density,rc. Hence, unless one can
simulate sufficiently large system sizes which exceed the
correlation length, it is almost impossible to obtain reliable
estimates ofr±sTd in the critical region via this route; to do
so would require a rather full understanding of finite-size
effects on the distribution function.

To meet this challenge, a scaling algorithm has been de-
veloped recently for estimating the liquid and gas coexisting
densities,r±sTd, of model fluids from grand canonical simu-
lation data f11,19g. The algorithm utilizes data
hQmin

± sT;Ld ,rmin
± sT;Ldj for the Q minima and derives the

density discontinuity,

Dr`sTd ; sr+ − r−d, s11d

by constructing an appropriate universal finite-size scaling
function. By this route precise estimates forDr`sTd for the
HCSW fluid and the RPM electrolyte were obtained up to
temperatures only 0.01–0.1 % belowTc f11,19g. On the other
hand, estimating the diameter,rdiamsTd, turns out to be more
complicated as will be demonstrated in the second part of
this article.

In order to calculate the coexistence-curve diameter, we
will compare the ratio ofBmin to Amin—sees9d ands10d—to
the average of theQ minima, Qmin

± sT;Ld. As mentioned
above,Amin andBmin vanish identically in the absence of the
mixing coefficients, making the ratio ill-defined. On the
other hand, when the system is asymmetric the ratio exhibits
rather complex finite-size corrections in which bothAmin and
Bmin contain terms varying asL−b/n, L−sD−1d/n, etc. One real-
izes, therefore, that there is nouniversalfinite-size scaling
function which yields the diameter in a unique fashion—in
contrast to the case of the density discontinuityDr`sTd
f11,19g. However, we demonstrate here that there are two
extremal or limiting cases which yieldeffectiveuniversal
scaling functions: The first arises when the pressure mixing
is absent or so small as to be negligible: sees68d below. The
HCSW fluid belongs to this category as demonstrated in Sec.
VII A. The second case is found when the pressure-mixing
term dominates over other contributions. An example will be
the RPM electrolyte which then provides us with the other
limiting scaling function: sees67d and Sec. VII B. Further-
more, as for the density discontinuityDr`sTd f19g, these lim-
iting scaling functions are analytically represented ins104d
and s107d.

The balance of this article is organized as follows: In Sec.
II the scaling behavior of theQLskrlLd is presented on the
basis of finite-size scaling theories. In Sec. III the analysis of
the Q minima is presented. Section IV is devoted to estima-
tion of the Yang-Yang ratios for the HCSW fluid and the

RPM by using the critical order-parameter distribution of the
Ising model and estimated nonuniversal amplitudes. Our best
estimates forRm are given in Eqs.s92d and s95d. In Sec. V
the scaling algorithm for estimating the coexistence-curve
diameter is presented. In Sec. VI an exactly soluble deco-
rated lattice gas model is considered to construct one limiting
case of the universal scaling function for the diameter. In
Sec. VII we estimate the diameters of the HCSW fluid and
the RPM electrolyte and compare them with previous results.
Section VIII summarizes the article and provides a brief dis-
cussion.

II. FINITE-SIZE SCALING THEORIES

In this section we derive the scaling behavior of
QLsT,krlLd in order to provide the necessary theoretical
background for estimating the Yang-Yang ratio,Rm, and the
coexistence-curve diameter,rdiamsTd. First, we consider the
largeL behavior where one can obtainQLsT,krlLd explicitly
on the basis of the double-Gaussian approximation. We then
studyQLsT,krlLd in the critical region belowTc via the com-
plete finite-size scaling theoryf14g.

A. Double-Gaussian limit

For sufficiently large L below Tc, we may study
QLsT,krlLd in the two-phase region on the basis of the two-
Gaussian approximation for the probability distribution,
PLsr ;T,md, of the densityr sat a fixedT andmd. This may
be written

PLsr;T,md < CLhx−
−1/2 expf− sr − r−d2Ld/2kBTx−g

+ x+
−1/2expf− sr − r+d2Ld/2kBTx+gj

3expfrsm − msdLd/kBTg, s12d

whereCLsm ,Td is a normalization constant while thex±sTd
are the infinite-volume susceptibilitiesfdefined via x
=s]r /]mdTg at r=r±sTd±. It is then straightforward to calcu-
late the mean density,krlL, and various moments,kmklL, with
m=r−krlL, for k=2, 3, …, as functions ofT andm.

Following Ref. f14g, let us introduce, for simplicity, the
average and difference susceptibilities

x̄sTd = 1
2sx+ + x−d and x0sTd = 1

2sx+ − x−d, s13d

and a convenient parametersrelated to the ordering fieldd

TsT,h;Ld = tanhfhsr0 + 1
2x0hdLdg , s14d

where r0sTd= 1
2Dr`sTd fsee s11dg and the reduced field or

chemical potential is defined via

h = fm − mssTdg/kBT. s15d

The reduced dimensionless average and difference suscepti-
bilities are then defined by

XsL,Td ; x̄sTdkBT/r0
2Ld, X0sL,Td ; x0sTdkBT/r0

2Ld.

s16d

Note thatX andX0 approach zero whenL→` sincex̄ andx0
are finite belowTc.
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After integratings12d multiplied by r, one may write the
mean density as

krlL = rdiamsTd + x̄h + fr0sTd + x0hgT. s17d

The expression forQL can then be written as a ratio of two
polynomials of fourth order inkrlL as presented in Ref.f14g:
sees4.19d–s4.25d.

In the thermodynamic limitsL→`d, QLsT,krlLd becomes
zero at the coexistence curve boundary,T= ±1. For large but
finite L, however, we expectQLsT,krlLd to exhibit two iso-
thermal minima close to zero atT±= ±1+DT±. To findDT± in
terms ofX andX0, we uses17d to expandQL in terms ofx̄
~X andx0~X0 up to linear order to obtain

QLsT,krlLd =
f2DT± ± X + X0 + ¯ g2

4DT±f2 + 3sX 7 X0d + ¯ g
. s18d

Solving the equations]QL /]Td=0 for DT± then yields the
minima at

DT± = ± 1
2sX ± X0d + O2, s19d

whereO2 represents terms of orderXiX0
j with i + j ù2. On

substituting this intos18d, one finds

Qmin
± = X ± X0 + O2. s20d

Note that for the symmetric casesi.e., X0=0d these results
agree with those given in Ref.f14g up to linear order inX.
For the corresponding densities of these minima, we follow
f11,19g and define the reduced density deviation by

ysT;rd ; 2fr − rdiamsTdg/Dr`sTd, s21d

where rdiamsTd is the diameter whileDr`sTd is defined in
s11d; here and below we user to represent the mean density,
krlL, unless undesirable ambiguity arises. Note thaty takes
the values ±1 atr=r±sTd. Using s17d and s19d yields, after
some algebra,

ymin
± = ± f1 + 1

2X lns4/eXd ± 1
2X0 lns4/e2Xdg + ¯ . s22d

By taking the mean ins20d and the difference ins22d, we
obtain thescaling relation

Dymin ; 1
2symin

+ − ymin
− d = 1 + 1

2q + ¯ , s23d

where

q ; Q̄min lnf4/eQ̄ming with Q̄min ; 1
2sQmin

+ + Qmin
− d.

s24d

Similarly, from s9d, s10d, s20d, ands22d one obtains

Dmin ;
Bmin

Amin
= 1

2q̄ + ¯ ,

q̄ ; Q̄min lnf4/e2Q̄ming = q − Q̄min. s25d

Notice that these relations areuniversal up to the leading

order in q sor q̄d and are asymptotically exact whenQ̄min
→0 sor L→`d.

B. Finite-size scaling closer to criticality

To understand the behavior ofQLsT,rd near criticality, we
employ the complete scaling theorys1d–s5d which has been
extended recently to finite systems of dimensionsLd with
periodic boundary conditionsf14g. The finite-size scaling an-
satz assertsf14,20g

rcp̃ < L−dYsx,zd, x ; DLt̃L1/n, z; ULh̃LD/n, s26d

in which Ysx,zd is the basic scaling function while we have
imposed the hyperscaling relationdn=2−a svalid for d,4d
and, for simplicity, neglected corrections to scaling. Heren is
the critical exponent for the correlation length, whileDL and
UL are nonuniversalamplitudes of dimensionsL−1/n and
L−D/n, respectively, which depend on the details of the system
under consideration: see below. The scaling functionYsx,zd
is universaland thus independent of microscopic details of
the system; but it depends on the geometry and the boundary
conditions imposed. According to the underlying symmetry,
Ysx,zd is an even function ofz.

Since the finite-size scaling function,Ysx,zd, is analytic
and even inz, one can expand it as

Ysx,zd = Y00 + Y10x + Y20x
2 + Y30x

3 + ¯ + z2sY02 + Y12x

+ Y22x
2 + Y32x

3 + ¯ d + z4sY04 + Y14x + Y24x
2

+ Y34x
3 + ¯ d + ¯ . s27d

One may further normalizeYsx,zd by choosing the nonuni-
versal amplitudes,DL and UL, so that one hasY10=Y02=1.
The conditionY02=1, in particular, will be used later for
estimating the Yang-Yang ratio,Rm.

To recover the bulk limit of the scaling forms5d, one may
setL=1/uDLt̃un and formally letL→`. This yieldss5d with
the identifications

Q = uDLu2−a/rc andU = UL/uDLuD, s28d

W±szd = Ys±1,zd. s29d

In the two-phase regionst̃,0d, the scaling functionW−szd
then has the expansion

W−szd = W−0 + W−1uzu + W−2z
2 + ¯ . s30d

This ensures the density discontinuity at the phase boundary.
The reduced dimensionless number density and suscepti-

bility are conveniently defined by

ř = r/rc ; s] p̌/]m̌dt, x̌NN ; s]2p̌/]m̌2dt. s31d

Similarly one may define the generalized susceptibilities,
x̌Nk;s]kp̌/]m̌kd, k=3,4,…, which will be used in the follow-
ing section.

C. Finite-size scaling behavior ofQL

To obtain QLsT,rd in terms of the scaling variablesx

~ t̃L1/n andz~ h̃LD/n, we may notice thatQL can be expressed
in terms of the generalized susceptibilities,x̌Nk; namely,QL

is equivalent torcVsx̌NNd2/ x̌N4 whereV is the volume of the
system. These susceptibilities then require the derivatives of
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the pressure,p, with respect to the chemical potential,m, at
fixed T.

In order to compute the susceptibilities in terms of the
scaling functionYsx,zd in s26d, we may, first, obtain the
reduced densityř by differentiatings26d with respect tom̌ at
fixed T. Using the scaling fieldss1d–s3d yields f14g

ř = 1 +e1AjL
−kfs]zYd − j2AjL

−ks]zYd2 − AlL
−ls]xYd + ¯ g,

s32d

where, settingl0;1 f7g, the exponents and nonuniversal am-
plitudes aref21g

e1 = 1 − j2, k = b/n, l = sD − 1d/n, s33d

Aj = UL/rc, Al = sl1 + j1dDL/e1UL, s34d

while, for simplicity, we have adopted the notations

s]xYd ; s]Y/]xd, s]x
2Yd ; s]2Y/]x2d, etc. s35d

Differentiatings32d with respect tom̌ then yields the sus-
ceptibility x̌NN as

x̌NN = e1
2rcAj

2Lg/nfs]z
2Yd − 3j2AjL

−ks]zYds]z
2Yd

− 2AlL
−ls]x]zYd + ¯ g. s36d

Finally, the fourth-order susceptibility is

x̌N4 = e1
4rc

3Aj
4Lsg+2Dd/nfs]z

4Yd − 5j2AjL
−k

3hs]zYds]z
4Yd + 2s]z

2Yds]z
3Ydj

− 4AlL
−ls]x]z

3Yd + ¯ g. s37d

The desired scaling form forQL in the grand canonical
representationspresented in Ref.f11g without any derivationd
is then readily obtained froms36d and s37d. After some al-
gebra, we find the central result

QLsT,r;Ld = QQsx,zdf1 + j2AjL
−kQ jsx,zd

+ AlL
−lQlsx,zd + ¯ g, s38d

where theuniversalscaling functions are given explicitly by

QQsx,zd = s]z
2Yd2/s]z

4Yd, s39d

Q jsx,zd = − s]zYd + 10s]z
2Yds]z

3Yd/s]z
4Yd, s40d

Qlsx,zd = 4fs]x]z
3Yd/s]z

4Yd − s]z]xYd/s]z
2Ydg. s41d

Hence, the symmetry ofYsx,zd implies thatQQsx,zd is even
in z while Q jsx,zd andQlsx,zd are odd. The pressure-mixing
coefficient j2 thus yields the leading antisymmetric
L-dependent correction term with a decay exponentk=b /n.

D. Finite-size scaling behavior of the reduced density
deviation, y

To derive the scaling form for the scale-free density de-
viation ysT;Ld, as defined ins21d, we first note that the
infinite-volume half-discontinuity,r0sTd= 1

2Dr`sTd, and the
coexistence-curve diameter vary asymptotically as

r0sTd/rc = B0utub + ¯ , s42d

rdiamsTd/rc = 1 +A2butu2b + A1−autu1−a + ¯ , s43d

where the amplitudes are explicitly given by

B0 = e1QUW−1utub,

A2b = − j2B
2/e1, A1−a = s2 − adsl1 + j1dQW−0utu1−a,

s44d

in which we have introduced the mixing factorf7g

t = 1 −k1l1 − sk0 + k1ds j1 + j2l1d/e1, s45d

while Q and U are related toUL and DL via the relations
presented ins28d, and W−0 and W−1 are expansion coeffi-
cients ofW−szd: sees30d. Note that, for simplicity, we have
neglected many higher order terms including corrections to
scalingf7g.

On using s32d, s42d–s44d one finds, after some algebra,
that the reduced density deviations21d has the expansion

ysT,r;Ld = Ysx,zdf1 + j2AjL
−kY jsx,zd + AlL

−lYlsx,zd + ¯ g,

s46d

where theuniversalauxiliary scaling functions are

Ysx,zd = s]zYd/W−1uxub, s47d

Y jsx,zd = − s]zYd + W−1
2 uxu2b/s]zYd, s48d

Ylsx,zd = − hs]xYd + s2 − adW−0uxu1−aj/s]zYd. s49d

Notice that in contrast to the scaling functions,QQ, Q j, and
Ql in s39d–s41d, Ysx,zd, Y jsx,zd andYlsx,zd are singular at
x=0. Furthermore,Ysx,zd diverges asuxu−b whenx→0.

So far we have derived the scaling behavior ofQLsT,r ;Ld
andysT,r ;Ld in terms ofx~ t̃L1/n andz~ h̃LD/n near critical-
ity. However, our goal is to obtain theQ minima and their
locations,Qmin

± sT;Ld and rmin
± sT;Ld, and to derive scaling

relations between them. These expressions will then serve to
estimate j2 quantitatively and, likewise, the diameter near
criticality.

III. ANALYSIS OF THE Q MINIMA

A. Q minima and their locations

From the observations of simulation dataf11,14,15g and
as borne out in the thermodynamic limiting form,QLsT,r ;Ld
is expected to exhibit two isothermal minima near the
coexistence-curve boundary. For symmetric casessi.e., l1
= j1= j2=0d, it is then obvious thatQQsx,zd in s39d must have
equiheight minima at some value ofz, say ±zmsxd, for fixed
x. Owing to the analyticity of the finite-size scaling function
Ysx,zd, the functionzmsxd is also analytic inx.

Now we expand the scaling functionYsx,zd about these
minima at ±zmsxd and, by virtue of the symmetry ofYsx,zd,
obtain
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Ysx,zd = o
i=0

`

s±diaisxdfz7 zmsxdgi , s50d

where theaisxd are universal expansion coefficients ofY.
Since Ysx,zd is analytic everywhere for finiteL, the aisxd
must be also analytic and have theuniversalexpansions

aisxd = ai0 + ai1x + ai2x
2 + ¯ . s51d

From s38d and s39d, in the symmetric case, we then find

Qmin
± sT;Ld < Qmin

c f1 + s2a21 − a41dx + ¯ g ; Qmsxd,

s52d

whereQmin
c =a20

2 /a40 is a universal constant.
In the presence of the mixing coefficientsl1, j1, andj2, the

locations of the minima will be shifted by amounts, say
Dz±sxd. To find these shifts, we solve the equation
s]QL /]zd=0 for Dz± perturbatively. After some algebra, one
obtains

Dz±sxd = f j2AjL
−kb1sxd + AlL

−lb2sxdg/b0sxd + ¯ , s53d

wherek, l, Aj, andAl were introduced ins33d ands34d while
the universal scaling functions are

b0sxd = 2
a4sxd
a2sxd

−
a6sxd
a4sxd

+ 2Sa3sxd
a2sxd

D2

, s54d

b1sxd = − 9a2sxd + 10„a3sxd…2/a4sxd, s55d

b2sxd = 4Fa28

a2
−

a48

a4
−

a18a3

a2
2 + 2

a38a3

a4a2
G , s56d

in which ai8sxd;dai /dx.
Substituting these intos38d–s41d via s50d finally yields

Qmin
± sT;Ld = Qmsxdf1 ± j2AjcjsxdL−k ± AlclsxdL−l + ¯ g,

s57d

where the auxiliary scaling functions, again universal, are

cjsxd = − a1sxd + 10a2sxda3sxd/a4sxd, s58d

clsxd = 4fa38sxd/a4sxd − a18sxd/a2sxdg. s59d

Note that thebjsxd in s54d–s56d do not enter here. The basic
asymmetry factor,Amin, defined ins9d is thus given explic-
itly by

AminsT;Ld = j2AjcjsxdL−k + AlclsxdL−l + ¯ . s60d

As mentioned in the Introduction, we see that the dominant
contribution toAmin arises from the pressure-mixing coeffi-
cient j2 with a decay exponentk=b /n.

On the other hand, the locations of the minima,ymin
± sT;Ld,

can be obtained similarly by usings46d–s49d and s53d. This
yields

ymin
± sT;Ld = ± Ymsxdf1 ± j2AjdjsxdL−k ± AldlsxdL−l + ¯ g,

s61d

where the scaling functions are

Ymsxd = a1sxd/uxubW−1, s62d

djsxd = − a1 +
a2b1

a1b0
+

W−1
2 uxu2b

a1
, s63d

dlsxd = −
a08

a1
+

a2b2

a1b0
− s2 − ad

W−0uxu1−a

a1
, s64d

while the bjsxd are defined ins54d–s56d. Note thatYmsxd
diverges at criticality asuxu−b while djsxd anddlsxd approach
constants singularly asuxu2b and uxu1−a, respectively, when
x→0.

B. Universal relations for the Q minima

The scaling algorithmf11,19g, which was used to estimate
the density discontinuity,Dr`sTd, requires a scaling relation

betweenDymin andQ̄min. From s57d and s61d, one has

Dymin = Ymsxd + ¯ , Q̄min = Qmsxd + ¯ . s65d

By formally solving for x in terms of Q̄min using s52d and
substituting into the first member ofs65d, one obtains a func-

tion DyminsQ̄mind. Note that its asymptotic behavior for

Q̄min→0 follows from s23d.
The coexistence-curve diameter,rdiamsTd, can be esti-

mated similarly via the scaling algorithm. For this purpose,
we considerDmin, defined ins25d, sinceBmin contains the
diameter only. One should, however, notice thatDmin is de-
fined only for asymmetriccases. Usings57d and s61d then
yields

Dmin =
j2AjdjsxdL−k + AldlsxdL−l + ¯

j2AjcjsxdL−k + AlclsxdL−l + ¯

. s66d

Unlike Dymin, Dmin has a complicated structure of finite-size
terms due to the mixing coefficients. One can clearly identify
two limiting cases. First, when pressure mixing is dominant,
one simply has

Dmin =
djsxd
cjsxd

+ OsL−l+kd < ejsxd. s67d

Eliminating x between this relation ands52d and s65d as be-
fore then yields an asymptotically universal relation between

Dmin and Q̄min. On the other hand, if pressure mixing is ab-
sent or can be neglected, the forms66d reduces to

Dmin =
dlsxd
clsxd

+ ¯ < elsxd. s68d

These results will play the central role in the subsequent

analysis. Note, however, that whenQ̄min→0 one recaptures
the universal relations25d regardless of the particular mixing
situation.

IV. DETECTING YANG-YANG ANOMALIES

In the previous section, the asymmetry factor,AminsT;Ld,
derived from theQ minima was analyzed and it was shown
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that the pressure-mixing coefficientj2 provides a leading
term varying asL−b/n which dominates over other contribu-
tions: see Table I for the Ising values for the universal expo-
nents used in the following sections. In particular, at critical-
ity sx~ t̃L1/n=0d the results60d leads to

Amin
c = j2Ajc̄jL

−k + Alc̄lL
−l + ¯ , s69d

where the universal constants are

c̄j = − a10 + 10a20a30/a40, s70d

c̄l = − 4a11/a20 + 4a31/a40. s71d

in which aij are the coefficients ofxj in the expansion of
Ysx,zd at the minima,z=zm: sees51d above. On the other
hand,Aj is anonuniversalconstant introduced ins34d, while
Al ~ sl1+ j1d / s1− j2d. Thus to measure, in particular, the
pressure-mixing coefficient,j2, one requires not only the
simulation data forAmin

c but also information concerning the
universal constantc̄j and the nonuniversal amplitudeAj.

A. Estimation of the universal constantc̄j

To determine the constantc̄j as given bys70d, one must
determine the expansion coefficients,aj0, of the scaling func-
tion Ysx,zd at x=0 about its minima: sees50d. Invoking uni-
versality, we thus consider a simple cubic ferromagnetic
Ising model, to which universality class normal fluids are
believed to belong. In this case the “pressure field,”rcp̃, in
s26d corresponds to the reduced free energy density for a

system of volumeLd while the ordering fieldh̃ corresponds
to the reduced dimensionless magnetic field. If we now de-
fine a scaled fluctuating magnetization density byw
;ALmLb/n swherem corresponds to the fluctuating reduced
magnetization densityd with the identificationAL=1/UL, we
find from s26d that

kwkl = ksALmLb/ndkl = s]kY/]zkd. s72d

Thus the expansion coefficientsaj0 can be obtained from the
j th moment of the scaled magnetization density at criticality.

Now in order to estimate thekwkl numerically, we will
utilize the most reliable and precise estimate available for the
universal probability distribution function,PL

csmd, of the
magnetization density,m, at criticality: this has been ob-
tained numerically from careful simulationsf22g. This func-
tion may be written in scaling form as

PL
csmd = C exph− f̃swd + wzj, w = ALmLb/n, s73d

where the nonuniversal amplitudeAL is chosen so that the
distribution has unit variance inw, while C is a normaliza-
tion constant; but one should notice froms27d and s72d that
this is equivalent to the normalization conditionY02=1 for

Ysx,zd: see Sec. II B. Recall thatz=ULh̃LD/n with UL

=1/AL. Here f̃swd corresponds to a universalcanonicalscal-
ing function. Tsypin and Blötef22g present this function ap-
proximately in the form

f̃swd = fsw/w0d2 − 1g2fasw/w0d2 + cg. s74d

wherew0, a andc are constants estimated via the simulations
as

w0 = 1.134s4d, a = 0.158s2d, c = 0.776s2d, s75d

where the uncertainties in parentheses refer to the last deci-
mal place quotedf22g. Furthermore, the condition of unit
variance yieldsAL.0.802.

Using these forms, one may calculate the derivatives of
Ys0,zd, i.e.,s]kY/]zkd, numerically by computing thekth mo-
ments of w. It is then straightforward to calculate
QLsTc,krlLd as a function ofz: see Fig. 1. It exhibits two
symmetric minima, atz= ±zm

0 where

Qmin
c = 0.1178s15d andzm

0 = 2.24s3d. s76d

Note, however, thatQmin
c is about 7% higher than the value

s.0.1107d found for the HCSW fluid via grand canonical
simulationsf11,23g. The universal constant,Qc, at criticality
si.e., z=0d agrees with the estimated value for the Ising uni-
versality class,Qc.0.6236f10,24g. Calculatingkwkl at the
minimum, z=zm

0 , then yields the desired expansion coeffi-
cients as

a10 . 1.2213, a20 . 0.1751, a30 . − 0.1271,

a40 . 0.2603, a60 . 0.9878. s77d

Notice that ins52d one obtainsQmin
c =a20

2 /a40.0.1178 which
is fully consistent with the estimates76d. Finally, the univer-
sal constantc̄j in s70d is found to be

c̄j . − 2.077. s78d

In reality the distribution of the magnetization,PL
csmd,

should behave like exps−cdumud+1d for large m with d=D /b
.4.8 for sd=3d Ising universality class: see Table I. Hence,
the approximate forms74d does not describe the behavior of
the distribution properly for largem, even thoughd+1

FIG. 1. Plot of the universal critical-point scaling function

QLsTc; krlLd<QQs0,zd vs z=ULh̃LD/n for the sd=3d Ising model
obtained numerically froms73d f22g. The dashed lines locate the
minima at ±zm

0 . ±2.2395.
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.5.8 is close to the exponent 6 embodied in this form. One
can improve the approximation of Tsypin and Blöte in order
to capture the correct behavior of largem. However, we find
that appropriate modifications leave the central estimates78d
for c̄j unchanged.

B. Nonuniversal amplitude UL

The nonuniversal amplitudeUL determining the value of
Aj via s34d depends on the microscopic details of the system.
Unlike the universal constantc̄j obtained in the previous sec-
tion, one must estimateUL separately for each model. Here
we present a method for evaluatingUL from knowledge of
the leading nonuniversal critical amplitudes for bulk thermo-
dynamic quantities.

In bulk near-critical systems, the susceptibility aboveTc
and the order parameter belowTc vary asf25,26g

MsTd = s] p̄/]m̄d < Butub, s79d

xNNsTd = s]2p̄/]m̄2d < C+t−g, s80d

with p̄=p/kBT and m̄=m /kBT, where the nonuniversal am-
plitudes can be obtained from the scaling formulations5d as
f7g

B ; rcB0 = s1 − j2drcQUW−1utub, s81d

C+ = s1 − j2d2rcQU2W+2utu−g, s82d

while t is defined ins45d. Note that these amplitudes have
dimensionsL−d. Recall thatW−1 andW+2 are expansion co-
efficients of the scaling functionsW±szd: sees29d and s30d.
Thus they are universal. Likewise note thatQ and U are
related to the finite-size amplitudes,DL andUL, via s28d.

Now we may combines81d ands82d in order to solve for
UL in terms ofB andC+. After some algebra, one finds

UL = UDL
D = KfBgsC+dbg1/s2−ad/u1 − j2u, s83d

whereK is a universal constant given by

K = sW−1
g W+2

b d−1/s2−ad, s84d

which can be obtained numerically from the well-studied
Ising model. As mentioned above, we first notice that the
condition of unit variance and the numerical simulationsf22g
yield UL=1/AL.1/0.802 for thesd=3d nearest-neighbor
simple cubicsscd Ising modelf22g: sees73d. The amplitudes
B andC+ for this model have been studied and are given by
f25,27g

B = 1.66s3d, C+ = 1.095s10d. s85d

From s83d and s85d together with the exponent values in
Table I, one then obtains

K = 0.881s12d. s86d

Now, one clearly sees froms83d that to estimateUL for
model fluids, information concerning the amplitudesB and
C+ is crucial.

C. Estimation of the Yang-Yang ratios

In this section we finally obtain estimates for the pressure-
mixing coefficientsj2, and thereby the Yang-Yang ratios,Rm,
for the HCSW fluid and the RPM by utilizing the results
obtained. In Fig. 2 the asymmetry factors,AminsL ;Tcd, at the
critical temperature for the two models are presented as func-
tions of L−sD−1d/n and L−b/n, respectively. If a Yang-Yang
anomaly is present, the data should decay asymptotically as
L−b/n whenL→`. The plot for the RPM clearly suggests that
this highly asymmetric model has a nonvanishing Yang-Yang
anomaly. On the other hand, the HCSW fluid would seem to
have a quite small, if any, Yang-Yang anomaly. The solid
lines are fits of the data to the formulas69d neglecting the
higher order terms.fSees91d and s94d below.g Note that the
fit for the HCSW fluid exhibits a small negative leading am-
plitude. Based on these data—the origin of which we first
review briefly—and the resulting fits we now describe the
procedures used to estimate the Yang-Yang ratios,Rm, quan-
titatively.

1. Details of simulations

The asymmetry factors presented in Fig. 2 and all the
simulation data in the subsequent figures have been obtained
via grand canonical Monte CarlosGCMCd simulations in a
cubic box of volumeV=L3. In GCMC one performs a simu-
lation at a thermodynamic state pointsSPd characterized by a
given value of the temperature,T, and the chemical potential,
m. In order to capitalize on the widely used multihistogram

FIG. 2. Plots of the asymmetry factors,Amin
c sLd, as obtained

from simulations forsad the HCSW fluidsvs L−sD−1d/nd and sbd for
the RPMsvs L−b/nd with the exponent values listed in Table I. The
solid curves are fits of the data tos69d.
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reweighting techniquef30g, one measures the joint histogram
of the fluctuating energyU and the number of particlesN for
different SPsf6,24g. This approach enables one to extract the
maximum amount of information from the simulations.

To obtain sufficiently accurate simulation data for the
HCSW fluid, each simulation was performed for a total run
length in the range ofs20–80d3106 MC steps, depending on
the particular system size under investigationf6g. A total of
30–100 SPsswhich broadly cover the critical region and the
coexistence curved have been used in the computations. Sta-
tistical uncertainties for the densityr=N/V and for the lead-
ing moments for each histogram are found to be less than
1
2%. On the other hand, for the RPM the total run length
needed for each simulation is considerably larger owing to
the much lower critical temperature, and to the great number
of SPs necessary to ensure accurate data. For example, a total
of 167 SPs were used forL=12a swhere a is the particle
diameterd, in which a typical SP has as2–10d3104 indepen-
dent samples amounting to,1010 MC steps f24g. For
smaller systems, the number of independent samples em-
ployed is generally larger by factors of 10–50. For each SP,
the statistical uncertainties of the raw data are less than
1–2 %.

We know of no definitive or systematic study concerning
the propagation of errors in the multihistogram reweighting
process. However, experience shows that when the SPs are
closely spaced in regions of rapid changes in the computed
quantities that encompass desired values ofT and m, the
systematic uncertainties in the leading moments do not ex-
ceed and may well be appropriately less than the statistical
uncertainties that characterize each SP. Hence, we believe
that the errors associated with the data presented in Fig. 2
and the subsequent figures are no larger than the symbol
sizessor, in plots like Fig. 3, no more than a couple of line
thicknessesd. Furthermore, the confirmation of a smooth and
systematic variation of specific plots with increasing values
of L, as seen in Fig. 3, serves as an important cross-check.
When apparent erratic behavior is seen, larger runs and/or
further SPs have been employed as a check.

2. Hard-core square-well fluid

The HCSW fluid investigated here consists of hard
spheres of diametera with an attractive square well of depth
e in the rangeaø r ø1.5a, wherer is the interparticle dis-
tance. Previously Orkoulaset al. f6g tried to estimateRm via
Monte Carlo sMCd simulations by computing directly the
second derivative of the chemical potential along the phase
boundary; they concluded that there was a negative but small
Yang-Yang ratio,Rm.−0.08. Owing to the finite-size ef-
fects, however, they could not rule out a vanishingRm. Here
we use the asymmetry factor,Amin, at criticality as illustrated
in Fig. 2 to calculateRm more precisely. In doing so, as
mentioned above, one needs to computeUL which requires
knowledge of the order parametersor density-half-
discontinuityd, r0sTd, and the susceptibility,xNNsTd, above
Tc.

Near criticality the appropriate expansions are

r0sTd = Butubf1 + buutuu + ¯ g, s87d

xNNsTd = C+t−gf1 + cut
u + ¯ g, s88d

where u is the leading correction-to-scaling exponent. For
sd=3d Ising criticality one hasu.0.52f28g, while bu andcu

are nonuniversal amplitudes. Recent precise simulation of
the coexisting densities for this HCSW fluid via the
Q-minima scaling algorithmssee belowd yields a reliable es-
timate for B: see Fig. 1 in Ref.f11g. On the other hand, to
determineC+, we have computed the finite-size susceptibility
xNNsT;Ld by simulations on the critical isochorer=rc. In the
bulk limit xNNsTdutug should then approachC+ when t→0:
see Fig. 3sad. For finite systems, however, this product will
approach zero whent→0, as seen in Fig. 3, sincexNNsT;Ld
is always bounded forL,`. Nevertheless, we can estimate
C+ reasonably well by extrapolating the data off11g to t=0.
We conclude

FIG. 3. Plot for estimating the susceptibility amplitudeC+ from
data for xNN on the critical isochoref6,24g. Note that t=sT
−Tcd /Tc while the valuesc=1 ssolid linesd andc=u=0.52 sdotted
linesd have been chosen for the auxiliary extrapolation exponent
stogether with, purely for clarity of presentation,A1=1 and Au

=0.4, 0.8d. For sad the HCSW fluid andsbd the RPM electrolyte, the
estimated critical densities arerc

* =rca
3=0.3206 and 0.079, respec-

tively, while L* =L /a=9,10.5,12,13.5 for the HCSW fluid, and
7,8,9,10,12 for the RPM. The dashed lines represent approximate
upper and lower extremal estimates forC+.
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Ba3 = 0.612 ± 0.005, C+a3 = 0.076 ± 0.005 sHCSWd.

s89d

Furthermore, the Ising fit to ther0sTd for the HCSW fluid via
s87d with a further correction term varying asutu2b f7g yields
the leading correction-to-scaling amplitude asbu.−1.04.
Using s83d ands86d now yields the HCSW nonuniversal am-
plitude as

ULu1 − j2uaD/n = 0.410 ± 0.012. s90d

The fit of theAmin data tos69d, illustrated in Fig. 2, yields

j2Ajc̄j . − 0.117, Alc̄l . 0.570 sHCSWd, s91d

where the two amplitudes have opposite signs. Finally by
using s34d, s78d, s90d, and s91d and the estimaterca

3

.0.3067f6g, we obtain

j2 = 0.040 ± 0.003, Rm = − 0.042 ± 0.003 sHCSWd.

s92d

This is, in fact, consistent with the previous, less precise
estimate −0.08±0.12f6g. It should be noted that the agree-
ment of the two, quite different procedures for estimatingRm

serves as an encouraging check on the overall validity of the
scaling analysis. Note that the uncertainty quoted in this es-
timate reflects the uncertainties only inB, C+ andrc, but not
in the fitting coefficients ins91d: because of the higher order
terms it is hard to provide a realistic estimate of these uncer-
tainties. It is reasonable to believe, however, that they are
likely to be no more than 20–30 %.

The amplitudeAl is proportional tol1+ j1: sees34d. One
may then hope to estimatel1+ j1, if not separately, from the
fit s91d via the same route. To do so, however, requires fur-
ther information concerning the nonuniversal amplitudeDL
and the universal constantc̄l: sees34d and s71d. The former
can be obtained via the normalization conditionY10=1 in the
expansions27d, as forUL; but this requires knowledge of the
temperature dependence of the finite-size-scaling function
Ysx,zd. This is also the case for estimating the universal con-
stantc̄l which containsa11 anda31. Hence, further investiga-
tion is needed to obtain estimates for these subdominant mix-
ing coefficients.

3. Restricted primitive model

The restricted primitive modelsRPMd electrolyte consists
of an equal number of positive and negative ions, of charges
±q0 and hard-core diametera interacting with each other via
the Coulomb potential,wsrd= ±q0

2/Dr, whereD is the dielec-
tric constant of medium. For this model the Yang-Yang ratio
Rm has not previously been investigated seriously. The
markedly asymmetric nature of the coexistence curve hints
thatRm might be large compared to the HCSW fluid. Indeed,
studies of the generalizedk-susceptibility locif14g have sug-
gested thatRm might be positive and nonnegligible.

To estimateRm for the RPM sat a z=5 fine-lattice dis-
cretization levelf24gd we follow the procedure used for the
HCSW fluid. Thus Fig. 3sbd presents the effective suscepti-
bility amplitude xNNtg, along the critical isochorer=rc as
obtained from grand canonical MC simulationsf24g. An

Ising fit to the precise data for the coexistence curvef11g can
also be well achieved. Thence we find

B = 0.284 ± 0.01, C+ = 0.087 ± 0.005 sRPMd, s93d

with bu.−1.17 in s87d.
As seen in Fig. 2, grand canonical MC simulations for the

RPM yield strong asymmetry values. The fit of the
Amin

c sTc;Ld data tos69d provides the amplitudes

j2Ajc̄j . 1.644, Alc̄l . 0.395 sRPMd. s94d

It is remarkable thatj2Aj has the opposite sign to that for the
HCSW fluid while the amplitude combination is also,14
times larger. Together with the critical density estimate,
rca

3.0.079f24g, we thus find

j2 = − 0.35 ± 0.07, Rm = 0.26 ± 0.04 sRPMd. s95d

In contrast to the HCSW fluid,Rm for the RPM is positive
and large which seems to reflect the strongly asymmetric
nature of this model electrolyte. As for the HCSW data the
uncertainties ins95d do not reflect those ins94d; however, as
the combinationj2Aj is rather large and the fit in Fig. 2 rather
good further uncertainties of only, say 5 to 10%, seem likely
from this source.

One should notice that the RPM studied here is, as men-
tioned above, a discretized version with the discretization
parameterz=5 f24g. It has been shown, however, that the
universal critical behavior is independent ofzs*4d f29g. Fur-
thermore, the nonuniversal critical parameters,Tc andrc, for
zù5 are close to the continuum limits; theTcsz=5d and
rcsz=5d are only 3% and 5% higher than the continuum
values, respectively. Thus we believe thatRmsz=5d is likely
to be quite close toRmsz=`d.

V. SCALING ALGORITHM FOR THE COEXISTENCE-
CURVE DIAMETER

Estimating the coexistence-curve diameter and, in particu-
lar, identifying its singular behavior near criticality has been
a major challenge for both experiment and simulation. As
mentioned in the Introduction, the presence of a nonvanish-
ing pressure-mixing coefficientj2 yields a utu2b term in the
diameter, that dominates the previously anticipatedf16g utu1−a

contribution. Here we present a scaling algorithm designed
to enhance the estimation of the diameter near criticality,
and, thereby, to improve estimates of the critical density,rc.

The recently developed algorithm for estimating the den-
sity discontinuity,Dr`sTd, utilizes the scaling relations be-
tween theQ minima and their normalized locations,ymin

± : see
s57d and s61d. The asymptotically exact expression for large
L at fixedT,Tc given in s23d provides the limiting guide to
construct a universal scaling functions65d by finding optimal
values for Dr`sTd. The step-by-step procedure for imple-
menting the algorithm is presented in Refs.f11,19g. Here we
adapt the algorithm to derive the coexistence-curve diameter.
For this purpose we consider the relation betweenDmin fcon-
taining rdiamsTd as a variable: sees8d–s10d and s25dg and

Q̄min. This exhibits a rather complicated structure of finite-
size corrections owing to the various mixing coefficients: see
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s66d; however, the relation achieves a universal forms25d for
large enoughL. Thus we may hope to construct a scaling
function from this limiting behavior via a scaling algorithm
by optimally choosing values forrdiamsTd. Although the steps
for the Dr`sTd algorithm are presented in detail inf19g, we
recapitulate the main points in the present setting for the sake
of completeness.

There are three main steps:(i) Collect data sets of the
minima of QL and their locations,hQmin

± sT;Lid ,rmin
± sT;Lidj,

for a range of box sizeshLiji=1
n at fixed values ofT&Tc. For

this purpose, multihistogram reweighting techniquef30g
should be employed to generate the data at any desired tem-
perature for a given system size. In practice,n=3 distinct
box sizes withL3*1.3L1 may well suffice; to avoid the ef-
fects of the corrections to scaling one finds that one needs at
leastL1/a*8 swherea measures the size of particlesd. How-
ever, this guide will surely depend on the system under con-
sideration.(ii) Choose a valueT=T0 sufficiently low that the
two-peaked, double-Gaussian structure ofPLsT0;rd is well

realized. In this caseQ̄min is close to zero.sFor the HCSW

fluid we obtainedQ̄min&0.03.d Now note that in this region

the universal scaling relation betweenDmin andQ̄min in s25d
is exact up to linear order. Hence, at this temperature we
select a diameter estimate, sayrT0

, independent of theLi,
which leads to the best fit of

Dmin
sid ; hrm

+ + rm
− − 2rT0

j/srm
+ − rm

− d/Amin vs q̄0
sid ; q̄sT0;Lid

s96d

to the relations25d. The valuerT0
can then be identified as an

estimate forrdiamsT0d. (iii) IncreaseT0 by a small amount
DT0 to T1=T0+DT0 and computeDminsT1;Lid and q̄1

sid

; q̄sT1;Lid. In doing so, it is necessary to chooseDT0 small
enough that the new sethq̄1

sidji=1
n overlaps the previous one

hq̄0
sidji=1

n . Note thatq̄ increases withT, approaching the critical
valueq̄c at Tc. When the new data set is obtained, we choose,
as before, a new value,rT1

, so that the new data set collapses
optimally onto the previous one; this procedure then extends
the previously computed scaling function to larger values of
q̄. Again, the new valuerT1

can be regarded as an estimate
for rdiamsT1d. These steps are repeated iteratively by increas-
ing the temperatureTj to Tj+1=Tj +DTj. This extends the
scaling function further and generates successive estimates
for rdiamsTjd for j =2, 3,… . When criticality is approached,
smaller incrementsDTj are needed and high quality data
prove essential. For graphical illustrations of these proce-
dures, see Fig. 2 of Ref.f19g.

One should note that owing to the competitive nature of
the singular terms ins66d, with k.0.517 andl.0.897,
there isno leading universal functionthat will, in general,
yield the diameter. This is in contrast to the case of the den-
sity discontinuity where there is a universal scaling function
which provides an easier and faster algorithm to estimate
Dr`sTd: seef19g. It is therefore necessary to approach the
problem case by case. In the following sections, we study the
two extremal limits and compute two distinct universal scal-
ing functions: sees67d and s68d. First, the scaling relation

s68d derived in the absence ofj2 can be obtained from an
exactly soluble decorated lattice gas model which is known
to exhibit a nonvanishingl1 but has no pressure mixingsi.e.,
j2;0d. One may suspect that the HCSW fluid, which has
been seen to exhibit a rather small pressure-mixing coeffi-
cient j2 may be well approximated by this route. The other
extremal case, ins67d, in which pressure mixing appears to
strongly dominate, can be obtained by analysis of the RPM
electrolyte.

VI. DECORATED LATTICE GAS MODEL

Consider a decorated lattice gas model which can be
solved exactly in terms of the solution of the associated Ising
modelf31,32g. The model exhibits an entropylike singularity,
utu1−a, in the diameter but has no pressure mixing and so
serves as a guide to the extremal cases68d for the diameter.

The decorated lattice gas we study here consists of pri-
mary cells centered on sites of a basic simple cubicsscd
lattice and secondary, decorating cells centered on the bonds
between the nearest neighbor pairs of sc lattice sites. All cells
have equal volume, sayv0, and do not overlap. Each cell can
be empty or occupied by at most one particle. Particles in
nearest neighbor primary cells then interact with energy −e
while particles occupying neighboring primary and second-
ary cells interact with energy −le. For simplicity we will
consider onlyl=1 which will suffice for our present pur-
poses. Of course, one may consider a simpler version by
only allowing the interaction between particles in nearest
primary and secondary cells. However, this will not change
the significant results.

The grand canonical partition function of the model can
be expressed in terms of that of the ordinary lattice gas
model f31g. Let N be the number of primary cells andq the
coordination numberswith q=6 for the sc latticed so that the
total number of cells isNtot=sq+2dN/2. The dimensionless
activity of molecules in the decorated lattice gas isz
=v0LT

−3 expsm /kBTd, whereLT is the de Broglie wavelength
and m is the chemical potentialf33g, and we write K
;e /kBT for the coupling constant of the decorated lattice gas
model. Then the grand canonical partition function can be
written as

Jsz,Kd = s1 + zdqN/2J̄sz̄,K̄d, s97d

whereJ̄ is the corresponding partition function of the ordi-
nary lattice gas as a function of the transformed activity and
coupling constant

z̄= zS1 + zelK

1 + z
Dq

, s98d

K̄ = K + lnF s1 + zds1 + ze2lKd
s1 + zelKd2 G . s99d

The critical point values,Kc and zc, follow by substituting

K̄c=4Kc
Is and z̄c=exps−2qKc

Isd whereKc
Is is the critical cou-

pling of associated sc Ising model.
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The coexistence curve of the decorated gas can be simi-
larly obtained from that for the Ising model. The number
density in the decorated gas is given by

r = lim
Ntot→`

Ntot
−1s] ln J/] ln zd

=
qz

sq + 2ds1 + zd
+

2

q + 2

3Fr̄sz̄,K̄d
] ln z̄

] ln z
+ w̄sz̄,K̄d

] K̄

] ln z
G , s100d

wherer̄ and −w̄ are the number density and the energy per
site of the ordinary lattice gas, which can be written on the
phase boundary as

r̄± = 1
2s1 ± M0d, w̄± = 1

4s 1
2q + u ± 6M0d , s101d

in which M0 and u are the spontaneous magnetization and
the energy density of the Ising model belowTc; here ± rep-
resent the liquid and gas sides of the phase boundary, respec-
tively. Note that the phase boundary in the activity-coupling

plane is given byz̄sK̄d=exps−qK̄/2d. Liu and Fisherf25g
give approximate forms for the spontaneous magnetization
and the specific heat belowTc as

M0sTd . Butubs1 − aeffutu1/2d,

CsTd . A−utu−as1 − aeffutu1/2d + beff, s102d

which are valid through the whole temperature range. It is
worth mentioning that one can calculatel1 exactly, while the
pressure-mixing coefficients,j1 and j2, are identically zero;
but computingl1 is not relevant here.

Now using s100d and s101d, and the precise numerical
results for the spontaneous magnetization,M0sTd, and spe-
cific heat for the Ising model obtained via the fitting formu-
las s102d together with the amplitude values inf25g, we can
obtain the coexistence curve,r±sTd, for the decorated lattice
gas model vias100d. Thus we can construct the scaling func-
tion for Dymin presented in Fig. 4 as symbols. One should
note, however, that, although the coexistence curve for the
decorated gas is exactly known, building the scaling function
for Dymin requires information concerning theQ minima;
these are finite-size quantities, which are not known exactly.
Thus, to obtain the Q minima and their locations,
hQmin

± sT;Ld ,rmin
± sT;Ldj, for the decorated gas model, we

have performed grand canonical MC simulations on lattices
of dimensionsL3L3L with periodic boundary conditions.
The resulting scaling curve in Fig. 4 is indistinguishable
from that of the HCSW fluidf19g—see the dashed curve—
built via the recursive scaling algorithm, thus confirming our
iterative scaling approach for constructingDr`sTd. We then
build a scaling plot forelsxd—sees68d—by using the exact
diameter of the decorated lattice gas. This curve, presented in
Fig. 5, should represent the case whenj2=0 and l1Þ0,
namely, Dmin<cl /dl. We expect that an effective scaling
curve for the HCSW fluid should be close to this one.

VII. NUMERICAL ESTIMATES FOR THE DIAMETERS

Following the procedures explained we now report ex-
plicit results for the HCSW fluid and the RPM.

A. Hard-core square-well fluid

To derive the diameter for the HCSW fluid, we start from
the temperatureT0

* ;kBT/e=1.10 at which, as for the density
discontinuityf19g, the double-peak Gaussian for the density
distribution is quite accurate. At this temperature, we deter-
mine thatrdiamsT0d which leads to the best fit ofDminsT0;Ld
vs q̄sT0;Ld to the asymptotically exact two-Gaussian limit

FIG. 4. Scaling plot ofsDymind−1/b vs q;Q̄min lns4/eQ̄mind
swith b=0.326d for the coexistence curve of the decorated lattice
gas model. The various symbols depict results generated from simu-
lations at increasing temperatures with system sizes,L* =8, 9, 10,
and 11. For comparison, the universal scaling curve obtained pre-
viously, and represented analytically in Eq.s12d of f19g, is pre-
sented as a dashed curve.

FIG. 5. Plot of thessubdominantd scaling functionelsxd vs q̄

;Q̄min lns4/e2Q̄mind for the diameter of the decorated lattice gas
model withl=1. The dashed line represents the two-Gaussian limit
s25d which is asymptotically exact to linear order inq̄, while the
solid curve is a fit tos104d.
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given in s25d: see the dashed straight line in Fig. 6sad. Since
Dmin depends on asymmetry, high quality data are required
as stressed before. As seen in Fig. 6sad, the data exhibit rela-
tively noisy behavior at low temperaturesspossibly owing to
the lack of enough histograms covering the whole range of
the two-phase region at this temperatured. The scatter may be
compared to the analysis of the density discontinuityssee
Refs.f11,19gd where the cancellation of the uncertainties on
the two sides of the coexistence region, when the average is
taken, evidently results in smoother behavior. Despite the
scatter in Fig. 6sad we can estimate the diameter atT0 to
within about ±0.2% relative torc. Following the procedure
in Sec. V, we then build up a scaling function numerically by
increasing the temperature,Tj, and finding optimal values for
rdiamsTjd. The function constructed this way for the HCSW
fluid is presented in Fig. 6sad; it should approximate the ex-
tremal scaling limit—seeelsxd in s68d—in which pressure
mixing is considered negligible.

The scaling analysis of theQ minima indicates that
Dminsxd<elsxd=dlsxd /clsxd in s68d converges to a universal
constant, sayCl, when q̄ approaches the critical valueq̄c

;qc−Q̄min
c .0.175 asuq̄− q̄cu1−a. From s59d, s64d, s68d, and

s71d, this constantCl is given by

Cl = c̄l/dls0d = c̄lF−
a01

a10
+

a20b20

a10b00
G−1

, s103d

whereb00 andb20 can also be expressed in terms of theaij
via s54d and s56d. ComputingCl, however, requires values
for a01, a11, and a31, which can be obtained from the tem-
perature dependence of the finite-size scaling function
Ysx,zd; but, at this stage these values are not known. Never-
theless, we have estimatedCl via extrapolation from the
HCSW data and obtainedCl .0.418. Using this value, we
can then fit the scaling curve to the approximant

elsxd . ClF1 −
s1 − q8ds1−ads1 + s1q8 + s2q82d

1 + t1q8 + t2q82 G , s104d

whereq8; q̄/ q̄c while we sett1=s1−1+a+ q̄c/2Cl in order
to ensure the small-q̄ limiting behaviors25d. The values fol-
lowing from this fit are shown in both parts of Fig. 6 as solid
curves: the fitted coefficients ares1.4.53, s2.−6.61, s3
.1.20, t1.3.85, t2.−9.08, andt3.4.24. Note the singular
behavior atTc whenq8→1 implied by thes1−q8d1−a factor
in s104d which yields a vertical tangent in the plot.

Figure 7sad presents the diameter,rdiamsTd, for the HCSW
fluid obtained via the scaling algorithm: see solid circles. For
comparison, previous estimates obtained directly from the
simulated probability distribution function of the density are
presentedsas crossesd. In the temperature range where the
equal-weight prescription works well, the estimates from the
two methods agree within the uncertainties. On the other
hand, the equal-weight prescription cannot provide reliable
values for the diameter in the near-critical region. The cur-
rent approach, however, givesrdiamsTd far closer to theTc. A
fit to the asymptotic expansionf7g

rdiamsTd . rcf1 + A2butu2b + A1−autu1−a + A1tg, s105d

yields the critical density asrc
* ;rca

3=0.3072±0.0005
which agrees with the previous central estimatef6g within
the uncertainties, while the amplitudes areA2b.0.37, A1−a

.−2.14, andA1.−2.52. Note that the magnitude ofA2b is
almost an order smaller than that ofA1−a. The sharp curva-
ture for the diameter very close toTc reflects theutu1−a sin-
gularity. The magnitude seems surprisingly large but appears
as an inescapable conclusion of our analysis: its validity
might benefit from further investigations and, indeed, experi-
ments.

As discussed above, we anticipate that whenDminsq̄d is
constructed from data for the HCSW fluid in moderately
small systems, it will match the scaling forms68d; of course,
when j2 is not identically zero, it should eventually reveal the
limiting form s67d whenL→`. In fact, this is confirmed by
comparing Figs. 5 and 6sad, where the scaling curve for the
HCSW fluid ssolid curved is seen to be in good agreement
with that of the decorated lattice gas model. On the other
hand, for the RPM a strongL−b/n term arises fromj2; in this
case the behavior of theDmin scaling function should ap-

FIG. 6. Plot of scaling functions for the coexistence-curve di-

ameters vsq̄;q−Q̄min for sad the HCSW fluid andsbd the RPM.
The symbols represent data at different temperatures while the
dashed lines represent the exact, two-Gaussian limiting behavior
s25d. For comparison, the plots display, as solid and dotted curves,
fits to the extremal scaling curves,elsxd andejsxd, usings104d and
s107d.
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proachejsxd identified in the asymptotic forms67d. To check
this, we move on to the calculation of the diameter for the
RPM.

B. Restricted primitive model

No changes in the previous procedures are needed to de-
rive the diameter for the RPM. Using the data set of theQ
minima employed inf11,19g, we construct the scaling func-
tion for Dmin starting from the low temperatureT*

;kBT/ sq0
2/Dad=0.0426.0.84Tc

* . The scaling function so
constructed is presented in Fig. 6sbd: it clearly differs from
that for the HCSW fluid. As argued, this is simply due to the
relatively large pressure-mixing coefficient of the RPM. The
scaling analysis yieldsDmin<ejsxd in s67d which approaches
a universal constant, sayCj, as uq̄− q̄cu2b whenT→Tc−. Just
as forCl, the constantCj can be written as

Cj = c̄j/djs0d = c̄jF− a10 +
a20b10

a10b00
G−1

, s106d

where b00=b0s0d and b10=b1s0d. Using s77d and s78d via
s54d ands55d, we haveCj .0.87. One may then fit the scal-

ing curve to the further approximant, as for the HCSW fluid,

ejsxd . CjF1 −
s1 − q8d2bs1 + s1q8 + s2q82d

1 + t1q8 + t2q82 G , s107d

with t1=s1−2b+ q̄c/2Cj. We obtains1.−1.871,s2.1.050,
s3.−0.169,t1.−2.422,t2.1.952, andt3.−0.529. The fit
is presented in Fig. 6 as dotted curves. As one might expect
from the exponent value 2b, this plot rises more sharply to
the limiting constant than doeselsxd with exponent 1−a.

In Fig. 7sbd we display the present estimatesssolid
circlesd for rdiamsTd for the RPM sat a fine discretization
level z=5 f24gd along with the previous valuesscrossesd f18g
estimated from the density distribution via the equal-weight
prescription. The agreement is good within the uncertainties;
but, as anticipated, the current approach yields reliable esti-
mates much closer to the critical point. Extrapolation pro-
vides the critical density estimaterc

* ;rca
3.0.078s3d in ex-

cellent agreement with the previous estimaterc
*

.0.0790s25d f24g. Furthermore, a fit tos105d yields A2b

.−2.03, A1−a.28.3, andA1.−23.5. It is interesting that
although 2b.0.65 is less than 1−a.0.89 the numerical
behavior of the RPM diameter asT approachesTc seems
smoother than for the HCSW fluid: note, however, that the
estimates for the RPM approach only toutu,10−3 whereas
those for the HCSW fluid show sharp behavior almost a de-
cade closer toTc.

VIII. SUMMARY

In summary we have provided a general method for de-
termining the strength of the Yang-Yang anomaly from simu-
lations of model fluids. Specifically, we have studied the iso-
thermal minima of the fourth-order fluctuation parameter,
QLsT;rd, in detail on the basis of the two-Gaussian approxi-
mation, that is exact well belowTc, and of the complete
finite-size scaling theory near criticalityf14g. It was shown
that the asymmetry factor,Amin~ sQmin

+ −Qmin
− d, exhibits a

leading term decaying asL−b/n and of magnitude set by the
pressure-mixing coefficient,j2, followed by aL−sD−1d/n term
arising from the combination of the mixing coefficientsl1
and j1: sees60d. We then showed that precise finite-size data
for Amin at Tc provide a quantitative route to estimating the
pressure-mixing coefficient,j2, and thereby the Yang-Yang
ratio, Rm. By using universal information for the critical
order-parameter distribution ofsd=3d Ising systems and the
specific critical amplitudes of the order-parameter and the
susceptibility aboveTc for the model fluids under study, one
can estimatej2 rather precisely. This method was applied to
the HCSW fluid with range-to-core ratio 1.5 and the RPM
electrolyte, leading toRm.−0.042 and +0.26, respectively:
see Sec. IV C. The approach can be applied readily to any
model fluid system: it will be a challenge to understand
which features of a system govern the sign and magnitude
of Rm.

We have also presented in detail a recursive scaling algo-
rithm using theQ minima which enables one to estimate
precisely the liquid-gas coexisting densities,r±sTd, very
close toTc. Corresponding universal scaling functions which,

FIG. 7. Plots of the coexistence curve diameters,rdiam
* sT*d

;rdiama3 obtained via the scaling algorithm: solid circles.sad The
HCSW fluid with T* =kBT/e andsbd the RPMsat a fine discretiza-
tion level z=5 f24gd with T* =kBTDa/q0

2. The crosses are previous
estimatesf6,18g obtained from data for the two-peak structure of
the density distribution via an equal-weight prescription. The open
circles in the insets are the estimates of the critical point,sTc

* ,rc
*d.
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in principle, can be derived from the probability distribution
function,PLsT;rd, were investigated numerically via the al-
gorithm by using grand canonical simulation data for the
HCSW fluid and for the RPMf6,24g. The two leading ex-
tremal universal scaling functions for the diameter were cal-
culated and represented analytically ins104d and s107d. The
algorithm yields precise results forrdiamsTd in a range of
temperature a decade or two closer toTc than was previously
feasible: see Fig. 7. The new estimates for the critical tem-
peratures and densities for both models agree well with the
best previous estimates extrapolated from the data aboveTc.
Furthermore, the behavior ofrdiamsTd close toTc for the two
models compares favorably with experimental data for SF6
and liquid metals, respectively,f34g .

This method is applicable to any model for which the
order-parameter distribution can be reliably established at
temperatures well below the critical temperature. To obtain
successful estimates, however, one needs high quality data
for the Q minima and their locations.
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